Transcription factor MafB-mediated inhibition of type I interferons in plasmacytoid dendritic cells

Author:

Saiga Hiroyuki1,Ueno Masaki2,Tanaka Takashi3,Kaisho Tsuneyasu34,Hoshino Katsuaki13

Affiliation:

1. Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan

2. Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan

3. Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan

4. Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Kimiidera, Wakayama 641-8509, Japan

Abstract

Abstract Type I IFNs (IFN-α and IFN-β), immunomodulatory cytokines secreted from activated plasmacytoid dendritic cells (pDCs), contribute to the innate defense against pathogenic infections and the pathogenesis of the autoimmune disease psoriasis vulgaris. A previous study has shown that an E26 transformation-specific (Ets) family transcription factor Spi-B can transactivate the type I IFN promoter in synergy with IFN regulatory factor (IRF)-7 and is required for type I IFN production in pDCs. However, the mechanism of negative regulation of type I IFNs by pDCs remains unknown. In this study, we report that a basic leucine zipper (bZip) transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB) suppresses the induction of type I IFNs in pDCs. The elevated expression of MafB inhibited the transactivation of type I IFN genes in a dose-dependent manner. At the molecular level, MafB interacted with the Ets domain of Spi-B and interfered with IRF-7–Spi-B complexation. Decreased MafB mRNA expression and degradation of MafB protein in the early phase of immune responses led to the enhancement of type I IFNs in pDCs. In vivo studies indicated that MafB is involved in resistance against imiquimod-induced psoriasis-like skin inflammation. Overall, these findings demonstrate that MafB acts as a negative regulator of type I IFN induction in pDCs and plays an important role in maintaining immune homeostasis.

Publisher

Oxford University Press (OUP)

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3