Cytokine signaling in chimeric antigen receptor T-cell therapy

Author:

Kagoya Yuki1ORCID

Affiliation:

1. Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine , 35 Shinanomachi, Shinjuku, Tokyo 160-8582 , Japan

Abstract

Abstract Adoptive immunotherapy using chimeric antigen-receptor (CAR)-engineered T cells can induce robust antitumor responses against hematologic malignancies. However, its efficacy is not durable in the majority of the patients, warranting further improvement of T-cell functions. Cytokine signaling is one of the key cascades regulating T-cell survival and effector functions. In addition to cytokines that use the common γ chain as a receptor subunit, multiple cytokines regulate T-cell functions directly or indirectly. Modulating cytokine signaling in CAR-T cells by genetic engineering is one promising strategy to augment their therapeutic efficacy. These strategies include ectopic expression of cytokines, cytokine receptors, and synthetic molecules that mimic endogenous cytokine signaling. Alternatively, autocrine IL-2 signaling can be augmented through reprogramming of CAR-T cell properties through transcriptional and epigenetic modification. On the other hand, cytokine production by CAR-T cells triggers systemic inflammatory responses, which mainly manifest as adverse events such as cytokine-release syndrome (CRS) and neurotoxicity. In addition to inhibiting direct inflammatory mediators such as IL-6 and IL-1 released from activated macrophages, suppression of T-cell-derived cytokines associated with the priming of macrophages can be accomplished through genetic modification of CAR-T cells. In this review, I will outline recently developed synthetic biology approaches to exploit cytokine signaling to enhance CAR-T cell functions. I will also discuss therapeutic target molecules to prevent or alleviate CAR-T cell-related toxicities.

Funder

Agency for Medical Research and Development

Japan Society for the Promotion of Science

KAKENHI

Takeda Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Immunology,General Medicine,Immunology and Allergy

Reference106 articles.

1. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia;Maude,2018

2. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma;Neelapu,2017

3. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study;Abramson,2020

4. Idecabtagene vicleucel in relapsed and refractory multiple myeloma;Munshi;N Engl J Med,2021

5. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study;Berdeja,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3