Sestrin3 enhances macrophage-mediated generation of T helper 1 and T helper 17 cells in a mouse colitis model

Author:

Ge Liuqing1,Xu Min2,Brant Steven R3,Liu Shaoping4,Zhu Chengliang5,Shang Jian1,Zhao Qiu1,Zhou Feng1

Affiliation:

1. Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China

2. Department of Hematology and Oncology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

3. Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA

4. Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China

5. Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China

Abstract

Abstract Intestinal macrophages participate in the pathogenesis of inflammatory bowel diseases (IBDs) through secreting pro-inflammatory and tissue-damaging factors as well as inducing the differentiation of T helper 1 (Th1) and T helper 17 (Th17) cells. Elucidating the regulatory mechanisms of intestinal macrophage activity in IBDs is important for developing new therapeutic approaches. In the current study, the expression of Sestrins in myeloid cells and lymphocytes in colonic lamina propria (LP) was evaluated in a murine acute colitis model. We found that Sestrin3 was significantly up-regulated in LP macrophages by the colonic LP microenvironment. In the in vitro experiments, lentivirus-mediated Sestrin3 knockdown significantly reduced the production of IL-12 and IL-23 in activated macrophages, in addition to decreasing the expression of classical pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. Additionally, Sestrin3 knockdown impaired macrophage-mediated generation of Th1 and Th17 cells from CD4+ T cells, probably through up-regulating the phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) in macrophages. In the in vivo experiments, adoptive transfer of Sestrin3-deficient macrophages alleviated the generation of Th1 and Th17 cells in the colonic LP and mesenteric lymph nodes. Furthermore, the adoptive transfer mitigated the severity of colitis, as demonstrated by lower production of pro-inflammatory cytokines and fewer tissue lesions in the colon. Our study suggests that Sestrin3 might be crucial for macrophage-mediated generation of pathogenic Th1 and Th17 cells in IBDs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Joint Foundation of Health Commission of Hubei Province

Publisher

Oxford University Press (OUP)

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3