Suppressive role of PPARγ in the IgE-dependent activation of mast cells

Author:

Nagata Kazuki1,Kasakura Kazumi1,Miura Ryosuke1,Yashiro Takuya1,Nishiyama Chiharu1ORCID

Affiliation:

1. Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo

Abstract

Abstract Mast cells (MCs) play a central role in IgE-dependent immune responses. PPARγ is a nuclear receptor that is essential for adipocyte differentiation and insulin sensitivity. Although PPARγ is expressed in activated MCs, the effect of PPARγ suppression in IgE-mediated activation of MCs is largely unknown. In the current study, we evaluated the effect of PPARγ knockdown on the function of IgE plus antigen (Ag)-stimulated MCs using siRNA-transfected BMMCs. We found that the mRNA expression level of cytokines in IgE/Ag-stimulated BMMCs was significantly increased in PPARγ knockdown BMMCs, and IgE/Ag-mediated degranulation and the protein production level of TNF-α was moderately increased by PPARγ knockdown, whereas the cell surface expression level of FcεRI was not affected by PPARγ knockdown. Oral administration of pioglitazone (PPARγ agonist) significantly suppressed body temperature change of mice in passive systemic anaphylaxis, supporting the inhibitory functions of PPARγ in IgE/Ag-dependent activation of MCs in vivo. IgE-mediated upregulation of mRNA levels of Ptgs2 (encoding COX-2) was drastically enhanced in PPARγ knockdown BMMCs. Although several prostaglandin (PG) derivatives are known to be ligands for PPARγ, treatment with a COX inhibitor, acetyl salicylic acid, upregulated the IgE-mediated increase of Il13, Tnf, and Ptgs2 mRNA levels in a synergistic manner with PPARγ siRNA. Knockdown of COX-1 and/or COX-2 by siRNA showed that suppression of IgE/Ag-mediated activation was mainly dependent on COX-1. Taken together, these results indicate that PPARγ suppresses IgE/Ag-induced transactivation of cytokine genes and the Ptgs2 gene in MCs in a manner distinguishable from that of PGs.

Publisher

Oxford University Press (OUP)

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3