Robust and resource efficient identification of shallow neural networks by fewest samples

Author:

Fornasier Massimo1,Vybíral Jan2,Daubechies Ingrid3

Affiliation:

1. Department of Mathematics, TU München, Boltzmannstr. 3, D-85748 Garching bei München, Germany

2. Department of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, 12000 Prague, Czech Republic

3. Department of Mathematics, Duke University, 120 Science Drive, Durham North Carolina 27708, USA

Abstract

Abstract We address the structure identification and the uniform approximation of sums of ridge functions $f(x)=\sum _{i=1}^m g_i(\langle a_i,x\rangle )$ on ${\mathbb{R}}^d$, representing a general form of a shallow feed-forward neural network, from a small number of query samples. Higher order differentiation, as used in our constructive approximations, of sums of ridge functions or of their compositions, as in deeper neural network, yields a natural connection between neural network weight identification and tensor product decomposition identification. In the case of the shallowest feed-forward neural network, second-order differentiation and tensors of order two (i.e., matrices) suffice as we prove in this paper. We use two sampling schemes to perform approximate differentiation—active sampling, where the sampling points are universal, actively and randomly designed, and passive sampling, where sampling points were preselected at random from a distribution with known density. Based on multiple gathered approximated first- and second-order differentials, our general approximation strategy is developed as a sequence of algorithms to perform individual sub-tasks. We first perform an active subspace search by approximating the span of the weight vectors $a_1,\dots ,a_m$. Then we use a straightforward substitution, which reduces the dimensionality of the problem from $d$ to $m$. The core of the construction is then the stable and efficient approximation of weights expressed in terms of rank-$1$ matrices $a_i \otimes a_i$, realized by formulating their individual identification as a suitable nonlinear program. We prove the successful identification by this program of weight vectors being close to orthonormal and we also show how we can constructively reduce to this case by a whitening procedure, without loss of any generality. We finally discuss the implementation and the performance of the proposed algorithmic pipeline with extensive numerical experiments, which illustrate and confirm the theoretical results.

Funder

Deutsche Forschungsgemeinschaft

Grant Agency of the Czech Republic

Neuron Fund for Support of Science

European Regional Development

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference66 articles.

1. Strong converse for identification via quantum channel;Ahlswede;IEEE Trans. Inform. Theory,2002

2. Guaranteed non-orthogonal tensor decomposition via alternating rank-1 updates;Anandkumar,2014

3. Breaking the curse of dimensionality with convex neural networks;Bach;J. Mach. Learn. Res.,2017

4. Training a 3-node neural network is NP-complete;Blum;Neural Netw.,1992

5. Linear matrix inequalities in system and control theory;Boyd,1994

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3