Affiliation:
1. Department of Mathematics, Duke University, Durham, NC 27708, USA
2. Department of Mathematics and Department of Statistical Science, Duke University
Abstract
Abstract
Kernelized Gram matrix $W$ constructed from data points $\{x_i\}_{i=1}^N$ as $W_{ij}= k_0( \frac{ \| x_i - x_j \|^2} {\sigma ^2} ) $ is widely used in graph-based geometric data analysis and unsupervised learning. An important question is how to choose the kernel bandwidth $\sigma $, and a common practice called self-tuned kernel adaptively sets a $\sigma _i$ at each point $x_i$ by the $k$-nearest neighbor (kNN) distance. When $x_i$s are sampled from a $d$-dimensional manifold embedded in a possibly high-dimensional space, unlike with fixed-bandwidth kernels, theoretical results of graph Laplacian convergence with self-tuned kernels have been incomplete. This paper proves the convergence of graph Laplacian operator $L_N$ to manifold (weighted-)Laplacian for a new family of kNN self-tuned kernels $W^{(\alpha )}_{ij} = k_0( \frac{ \| x_i - x_j \|^2}{ \epsilon \hat{\rho }(x_i) \hat{\rho }(x_j)})/\hat{\rho }(x_i)^\alpha \hat{\rho }(x_j)^\alpha $, where $\hat{\rho }$ is the estimated bandwidth function by kNN and the limiting operator is also parametrized by $\alpha $. When $\alpha = 1$, the limiting operator is the weighted manifold Laplacian $\varDelta _p$. Specifically, we prove the point-wise convergence of $L_N f $ and convergence of the graph Dirichlet form with rates. Our analysis is based on first establishing a $C^0$ consistency for $\hat{\rho }$ which bounds the relative estimation error $|\hat{\rho } - \bar{\rho }|/\bar{\rho }$ uniformly with high probability, where $\bar{\rho } = p^{-1/d}$ and $p$ is the data density function. Our theoretical results reveal the advantage of the self-tuned kernel over the fixed-bandwidth kernel via smaller variance error in low-density regions. In the algorithm, no prior knowledge of $d$ or data density is needed. The theoretical results are supported by numerical experiments on simulated data and hand-written digit image data.
Funder
National Science Foundation
Alfred P. Sloan Foundation
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Reference58 articles.
1. The isomap algorithm and topological stability;Balasubramanian;Science,2002
2. Laplacian eigenmaps for dimensionality reduction and data representation;Belkin;Neural Comput.,2003
3. Convergence of Laplacian eigenmaps;Belkin;Advances in Neural Information Processing Systems,2007
4. Measure-based diffusion grid construction and high-dimensional data discretization;Bermanis;Appl. Comput. Harmon. Anal.,2016
5. Variable bandwidth diffusion kernels;Berry;Appl. Comput. Harmon. Anal.,2016
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献