Affiliation:
1. Département de Mathématiques et Applications, Ecole Normale Supérieure, Paris, France and Département de Mathématiques d'Orsay, Université Paris-Sud, Orsay, France
2. Department of Electrical Engineering and Department of Statistics, Stanford University, California, USA
3. Department of Electrical Engineering, Stanford University, California, USA
Abstract
Abstract
Given a high-dimensional data matrix $\boldsymbol{A}\in{{\mathbb{R}}}^{m\times n}$, approximate message passing (AMP) algorithms construct sequences of vectors $\boldsymbol{u}^{t}\in{{\mathbb{R}}}^{n}$, ${\boldsymbol v}^{t}\in{{\mathbb{R}}}^{m}$, indexed by $t\in \{0,1,2\dots \}$ by iteratively applying $\boldsymbol{A}$ or $\boldsymbol{A}^{{\textsf T}}$ and suitable nonlinear functions, which depend on the specific application. Special instances of this approach have been developed—among other applications—for compressed sensing reconstruction, robust regression, Bayesian estimation, low-rank matrix recovery, phase retrieval and community detection in graphs. For certain classes of random matrices $\boldsymbol{A}$, AMP admits an asymptotically exact description in the high-dimensional limit $m,n\to \infty $, which goes under the name of state evolution. Earlier work established state evolution for separable nonlinearities (under certain regularity conditions). Nevertheless, empirical work demonstrated several important applications that require non-separable functions. In this paper we generalize state evolution to Lipschitz continuous non-separable nonlinearities, for Gaussian matrices $\boldsymbol{A}$. Our proof makes use of Bolthausen’s conditioning technique along with several approximation arguments. In particular, we introduce a modified algorithm (called LoAMP for Long AMP), which is of independent interest.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献