Super-resolution multi-reference alignment

Author:

Bendory Tamir1,Jaffe Ariel2,Leeb William3,Sharon Nir4,Singer Amit5

Affiliation:

1. School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

2. Applied Mathematics Program, Yale University, New Haven, CT, USA

3. School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA

4. School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

5. Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA

Abstract

Abstract We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in ${\mathbb{R}}^M$ is uniquely determined when the number $L$ of samples per observation is of the order of the square root of the signal’s length ($L=O(\sqrt{M})$). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to $1/\textrm{SNR}^3$. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled ($L=M$). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.

Funder

National Science Foundation

BSF

NIH

NIGMS

AFOSR

Foundation Math+X Investigator Award

Moore Foundation Data-Driven Discovery Investigator Award

Zimin Institute for Engineering Solutions Advancing Better Lives

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference63 articles.

1. Multireference alignment is easier with an aperiodic translation distribution;Abbe;IEEE Trans. Info. Theory,2018

2. Estimation in the Group Action Channel

3. Fundamental limits in multi-image alignment;Aguerrebere;IEEE Trans. Signal Process.,2016

4. Rank-one multi-reference factor analysis;Aizenbud;Statistics and Computing,2019

5. Statistical guarantees for the EM algorithm: From population to sample-based analysis;Balakrishnan;Ann. Stat.,2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3