A theory of optimal convex regularization for low-dimensional recovery

Author:

Traonmilin Yann1,Gribonval Rémi2,Vaiter Samuel3

Affiliation:

1. Université de Bordeaux, Bordeaux INP, CNRS, IMB , UMR 5251, F-33400 Talence , France

2. Université de Lyon, ENS de Lyon, UCBL, CNRS, Inria, LIP , F-69342 Lyon , France

3. CNRS, Université Côte d’Azur, LJAD , F-06108 Nice , France

Abstract

Abstract We consider the problem of recovering elements of a low-dimensional model from under-determined linear measurements. To perform recovery, we consider the minimization of a convex regularizer subject to a data fit constraint. Given a model, we ask ourselves what is the ‘best’ convex regularizer to perform its recovery. To answer this question, we define an optimal regularizer as a function that maximizes a compliance measure with respect to the model. We introduce and study several notions of compliance. We give analytical expressions for compliance measures based on the best-known recovery guarantees with the restricted isometry property. These expressions permit to show the optimality of the $\ell ^{1}$-norm for sparse recovery and of the nuclear norm for low-rank matrix recovery for these compliance measures. We also investigate the construction of an optimal convex regularizer using the examples of sparsity in levels and of sparse plus low-rank models.

Funder

ANR

EFFIREG

AllegroAssai

GraVa

Publisher

Oxford University Press (OUP)

Reference44 articles.

1. Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum;Adcock;Adv. Imaging Electron Phys.,2014

2. Living on the edge: phase transitions in convex programs with random data;Amelunxen;Inform. Inference, J. IMA,2014

3. Effective condition number bounds for convex regularization;Amelunxen;Inform. Theory, IEEE Trans.,2020

4. Sparse prediction with the k-support norm;Argyriou;Adv. Neural Inform. Process. Syst.,2012

5. Learning with Submodular Functions: A Convex Optimization Perspective;Bach,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3