Multi-reference factor analysis: low-rank covariance estimation under unknown translations

Author:

Landa Boris1,Shkolnisky Yoel2

Affiliation:

1. Program in Applied Mathematics, Yale University, New Haven, CT 06511, USA

2. Department of Applied Mathematics, School of Mathematical Sciences, Tel-Aviv University, P.O. box 39040, Ramat-Aviv Tel-Aviv 6997801 ISRAEL

Abstract

Abstract We consider the problem of estimating the covariance matrix of a random signal observed through unknown translations (modeled by cyclic shifts) and corrupted by noise. Solving this problem allows to discover low-rank structures masked by the existence of translations (which act as nuisance parameters), with direct application to principal components analysis. We assume that the underlying signal is of length $L$ and follows a standard factor model with mean zero and $r$ normally distributed factors. To recover the covariance matrix in this case, we propose to employ the second- and fourth-order shift-invariant moments of the signal known as the power spectrum and the trispectrum. We prove that they are sufficient for recovering the covariance matrix (under a certain technical condition) when $r<\sqrt{L}$. Correspondingly, we provide a polynomial-time procedure for estimating the covariance matrix from many (translated and noisy) observations, where no explicit knowledge of $r$ is required, and prove the procedure’s statistical consistency. While our results establish that covariance estimation is possible from the power spectrum and the trispectrum for low-rank covariance matrices, we prove that this is not the case for full-rank covariance matrices. We conduct numerical experiments that corroborate our theoretical findings and demonstrate the favourable performance of our algorithms in various settings, including in high levels of noise.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference46 articles.

1. Multireference alignment is easier with an aperiodic translation distribution;Abbe,2017

2. Sample complexity of the boolean multireference alignment problem;Abbe,2017

3. Estimation in the group action channel;Abbe,2018

4. Local cosine transform—a method for the reduction of the blocking effect in jpeg;Aharoni,1993

5. Rank-one multi-reference factor analysis;Aizenbud,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3