Stochastic modified equations for the asynchronous stochastic gradient descent

Author:

An Jing1,Lu Jianfeng2,Ying Lexing3

Affiliation:

1. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA

2. Department of Mathematics, Department of Chemistry and Department of Physics, Duke University, Box 90320, USA

3. Department of Mathematics and Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, CA 94305, USA

Abstract

Abstract We propose stochastic modified equations (SMEs) for modelling the asynchronous stochastic gradient descent (ASGD) algorithms. The resulting SME of Langevin type extracts more information about the ASGD dynamics and elucidates the relationship between different types of stochastic gradient algorithms. We show the convergence of ASGD to the SME in the continuous time limit, as well as the SME’s precise prediction to the trajectories of ASGD with various forcing terms. As an application, we propose an optimal mini-batching strategy for ASGD via solving the optimal control problem of the associated SME.

Funder

Gene Golub Research Fellowship

National Science Foundation

U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing program

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference25 articles.

1. Distributed delayed stochastic optimization;Agarwal,2011

2. Sur les fonctions absolument monotones;Bernstein;Acta Math.,1929

3. Optimization methods for large-scale machine learning;Bottou;SIAM Rev.,2018

4. Optimal distributed online prediction using mini-batches;Dekel;J. Mach. Learn. Res.,2012

5. Adaptive subgradient methods for online learning and stochastic optimization;Duchi;J. Mach. Learn. Res.,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3