Total variation multiscale estimators for linear inverse problems

Author:

del Álamo Miguel1,Munk Axel12

Affiliation:

1. University of Göttingen, Institute of Mathematical Stochastics, Goldschmidtstr. 7, Göttingen 37077, Germany

2. Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany

Abstract

Abstract Even though the statistical theory of linear inverse problems is a well-studied topic, certain relevant cases remain open. Among these is the estimation of functions of bounded variation ($BV$), meaning $L^1$ functions on a $d$-dimensional domain whose weak first derivatives are finite Radon measures. The estimation of $BV$ functions is relevant in many applications, since it involves minimal smoothness assumptions and gives simplified, interpretable cartoonized reconstructions. In this paper, we propose a novel technique for estimating $BV$ functions in an inverse problem setting and provide theoretical guaranties by showing that the proposed estimator is minimax optimal up to logarithms with respect to the $L^q$-risk, for any $q\in [1,\infty )$. This is to the best of our knowledge the first convergence result for $BV$ functions in inverse problems in dimension $d\geq 2$, and it extends the results of Donoho (1995, Appl. Comput. Harmon. Anal., 2, 101–126) in $d=1$. Furthermore, our analysis unravels a novel regime for large $q$ in which the minimax rate is slower than $n^{-1/(d+2\beta +2)}$, where $\beta$ is the degree of ill-posedness: our analysis shows that this slower rate arises from the low smoothness of $BV$ functions. The proposed estimator combines variational regularization techniques with the wavelet-vaguelette decomposition of operators.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference48 articles.

1. Wavelet decomposition approaches to statistical inverse problems;Abramovich;Biometrika,1998

2. Image deblurring with Poisson data: from cells to galaxies;Bertero;Inverse Problems,2009

3. Asymptotic equivalence of nonparametric regression and white noise;Brown;Ann. Statist.,1996

4. Large noise in variational regularization;Burger;Trans. Math. Appl.,2018

5. Recovering edges in ill-posed inverse problems: optimality of curvelet frames;Candès;Ann. Statist.,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimax detection of localized signals in statistical inverse problems;Information and Inference: A Journal of the IMA;2023-04-27

2. A Variational View on Statistical Multiscale Estimation;Annual Review of Statistics and Its Application;2022-03-07

3. Convergence rates for oversmoothing Banach space regularization;ETNA - Electronic Transactions on Numerical Analysis;2022

4. Variational Multiscale Nonparametric Regression: Algorithms and Implementation;Algorithms;2020-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3