Generalized kernel distance covariance in high dimensions: non-null CLTs and power universality

Author:

Han Qiyang1,Shen Yandi2

Affiliation:

1. Department of Statistics, Rutgers University , Piscataway, NJ 08854 , USA

2. Department of Statistics, University of Chicago , Chicago, IL 60637 , USA

Abstract

Abstract Distance covariance is a popular dependence measure for two random vectors $X$ and $Y$ of possibly different dimensions and types. Recent years have witnessed concentrated efforts in the literature to understand the distributional properties of the sample distance covariance in a high-dimensional setting, with an exclusive emphasis on the null case that $X$ and $Y$ are independent. This paper derives the first non-null central limit theorem for the sample distance covariance, and the more general sample (Hilbert–Schmidt) kernel distance covariance in high dimensions, in the distributional class of $(X,Y)$ with a separable covariance structure. The new non-null central limit theorem yields an asymptotically exact first-order power formula for the widely used generalized kernel distance correlation test of independence between $X$ and $Y$. The power formula in particular unveils an interesting universality phenomenon: the power of the generalized kernel distance correlation test is completely determined by $n\cdot \operatorname{dCor}^{2}(X,Y)/\sqrt{2}$ in the high-dimensional limit, regardless of a wide range of choices of the kernels and bandwidth parameters. Furthermore, this separation rate is also shown to be optimal in a minimax sense. The key step in the proof of the non-null central limit theorem is a precise expansion of the mean and variance of the sample distance covariance in high dimensions, which shows, among other things, that the non-null Gaussian approximation of the sample distance covariance involves a rather subtle interplay between the dimension-to-sample ratio and the dependence between $X$ and $Y$.

Funder

NSF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3