Estimating location parameters in sample-heterogeneous distributions

Author:

Pensia Ankit1,Jog Varun2,Loh Po-Ling2

Affiliation:

1. Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA

2. Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK

Abstract

Abstract Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statistics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In this paper, we consider the problem of mean estimation when independent samples are drawn from $d$-dimensional non-identical distributions possessing a common mean. When the distributions are radially symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth and median estimators and whose performance adapts to the level of heterogeneity in the data. We show that our estimator is near optimal when data are i.i.d. and when the fraction of ‘low-noise’ distributions is as small as $\varOmega \left (\frac{d \log n}{n}\right )$, where $n$ is the number of samples. We also derive minimax lower bounds on the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we extend our theory to linear regression. In both the mean estimation and regression settings, we present computationally feasible versions of our estimators that run in time polynomial in the number of data points.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference49 articles.

1. On the asymptotic properties of a simple estimate of the mode;Abraham;ESAIM Probab. Stat.,2004

2. On spectral learning of mixtures of distributions;Achlioptas,2005

3. Efficient algorithms for geometric optimization;Agarwal;ACM Comput. Surv.,1998

4. Learning mixtures of arbitrary Gaussians;Arora,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Near-Optimal Mean Estimation with Unknown, Heteroskedastic Variances;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

2. Robust empirical risk minimization via Newton’s method;Econometrics and Statistics;2023-07

3. On mean estimation for heteroscedastic random variables;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3