Minimax optimal regression over Sobolev spaces via Laplacian Eigenmaps on neighbourhood graphs

Author:

Green Alden1,Balakrishnan Sivaraman2,Tibshirani Ryan J3

Affiliation:

1. Department of Statistics, Stanford University , Stanford, CA 94305 , USA

2. Department of Statistics and Data Science, Carnegie Mellon University , Pittsburgh, PA 15213 , USA

3. Department of Statistics, University of California , Berkeley, Berkeley, CA 94720 , USA

Abstract

Abstract In this paper, we study the statistical properties of Principal Components Regression with Laplacian Eigenmaps (PCR-LE), a method for non-parametric regression based on Laplacian Eigenmaps (LE). PCR-LE works by projecting a vector of observed responses ${\textbf Y} = (Y_1,\ldots ,Y_n)$ onto a subspace spanned by certain eigenvectors of a neighbourhood graph Laplacian. We show that PCR-LE achieves minimax rates of convergence for random design regression over Sobolev spaces. Under sufficient smoothness conditions on the design density $p$, PCR-LE achieves the optimal rates for both estimation (where the optimal rate in squared $L^2$ norm is known to be $n^{-2s/(2s + d)}$) and goodness-of-fit testing ($n^{-4s/(4s + d)}$). We also consider the situation where the design is supported on a manifold of small intrinsic dimension $m$, and give upper bounds establishing that PCR-LE achieves the faster minimax estimation ($n^{-2s/(2s + m)}$) and testing ($n^{-4s/(4s + m)}$) rates of convergence. Interestingly, these rates are almost always much faster than the known rates of convergence of graph Laplacian eigenvectors to their population-level limits; in other words, for this problem regression with estimated features appears to be much easier, statistically speaking, than estimating the features itself. We support these theoretical results with empirical evidence.

Funder

National Science Foundation

Google Research Scholar Award

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference75 articles.

1. Estimating the reach of a manifold;Aamari;Electron. J. Stat.,2019

2. Faster principal component regression and stable matrix chebyshev approximation;Allen-Zhu,2017

3. Remember the curse of dimensionality: the case of goodness-of-fit testing in arbitrary dimension;Arias-Castro;J. Nonparametr. Stat.,2018

4. Minimax rates for homology inference;Balakrishnan,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3