Uncertainty quantification in the Bradley–Terry–Luce model

Author:

Gao Chao1,Shen Yandi1,Zhang Anderson Y2

Affiliation:

1. University of Chicago Department of Statistics, , Chicago, IL 60637, USA

2. University of Pennsylvania Department of Statistics and Data Science, , Philadelphia, PA 19104, USA

Abstract

Abstract The Bradley–Terry–Luce (BTL) model is a benchmark model for pairwise comparisons between individuals. Despite recent progress on the first-order asymptotics of several popular procedures, the understanding of uncertainty quantification in the BTL model remains largely incomplete, especially when the underlying comparison graph is sparse. In this paper, we fill this gap by focusing on two estimators that have received much recent attention: the maximum likelihood estimator (MLE) and the spectral estimator. Using a unified proof strategy, we derive sharp and uniform non-asymptotic expansions for both estimators in the sparsest possible regime (up to some poly-logarithmic factors) of the underlying comparison graph. These expansions allow us to obtain: (i) finite-dimensional central limit theorems for both estimators; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of $\ell _2$ estimation, which is achieved by the MLE but not by the spectral estimator. Our proof is based on a self-consistent equation of the second-order remainder vector and a novel leave-two-out analysis.

Funder

National Science Foundation

Alfred H. Williams Faculty Scholar Award

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference45 articles.

1. Spectral radii of sparse random matrices;Benaych-Georges;Annales de l'Institut Henri Poincaré Probabilités et Statistiques,2020

2. Concentration Inequalities

3. Random graphs with a given degree sequence;Chatterjee;Ann. Appl. Probab.,2011

4. Optimal full ranking from pairwise comparisons;Chen;Ann. Stat.,2022

5. Partial recovery for top-k ranking: optimality of MLE and suboptimality of the spectral method;Chen;Ann. Stat.,2022

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of Skill Distributions;IEEE Transactions on Information Theory;2024-09

2. A spectral approach for the dynamic Bradley–Terry model;Stat;2024-08-05

3. Improved theoretical guarantee for rank aggregation via spectral method;Information and Inference: A Journal of the IMA;2024-07-01

4. Ranking Inferences Based on the Top Choice of Multiway Comparisons;Journal of the American Statistical Association;2024-03-13

5. Covariate Assisted Entity Ranking with Sparse Intrinsic Scores;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3