Affiliation:
1. School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, UK
Abstract
Abstract
Anchor-based techniques reduce the computational complexity of spectral clustering algorithms. Although empirical tests have shown promising results, there is currently a lack of theoretical support for the anchoring approach. We define a specific anchor-based algorithm and show that it is amenable to rigorous analysis, as well as being effective in practice. We establish the theoretical consistency of the method in an asymptotic setting where data is sampled from an underlying continuous probability distribution. In particular, we provide sharp asymptotic conditions for the number of nearest neighbors in the algorithm, which ensure that the anchor-based method can recover with high probability disjoint clusters that are mutually separated by a positive distance. We illustrate the performance of the algorithm on synthetic data and explain how the theoretical convergence analysis can be used to inform the practical choice of parameter scalings. We also test the accuracy and efficiency of the algorithm on two large scale real data sets. We find that the algorithm offers clear advantages over standard spectral clustering. We also find that it is competitive with the state-of-the-art LSC method of Chen and Cai (Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011), while having the added benefit of a consistency guarantee.
Funder
Engineering and Physical Sciences Research Council
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献