Nearly minimax-optimal rates for noisy sparse phase retrieval via early-stopped mirror descent

Author:

Wu Fan1,Rebeschini Patrick1

Affiliation:

1. Department of Statistics, University of Oxford , 24-29 StGiles', Oxford OX13LB , UK

Abstract

Abstract This paper studies early-stopped mirror descent applied to noisy sparse phase retrieval, which is the problem of recovering a $k$-sparse signal $\textbf{x}^\star \in{\mathbb{R}}^n$ from a set of quadratic Gaussian measurements corrupted by sub-exponential noise. We consider the (non-convex) unregularized empirical risk minimization problem and show that early-stopped mirror descent, when equipped with the hypentropy mirror map and proper initialization, achieves a nearly minimax-optimal rate of convergence, provided the sample size is at least of order $k^2$ (modulo logarithmic term) and the minimum (in modulus) non-zero entry of the signal is on the order of $\|\textbf{x}^\star \|_2/\sqrt{k}$. Our theory leads to a simple algorithm that does not rely on explicit regularization or thresholding steps to promote sparsity. More generally, our results establish a connection between mirror descent and sparsity in the non-convex problem of noisy sparse phase retrieval, adding to the literature on early stopping that has mostly focused on non-sparse, Euclidean and convex settings via gradient descent. Our proof combines a potential-based analysis of mirror descent with a quantitative control on a variational coherence property that we establish along the path of mirror descent, up to a prescribed stopping time.

Funder

OxWaSP CDT Programme

Alan Turing Institute

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference47 articles.

1. Implicit regularization in deep matrix factorization;Arora;Adv. Neural Inform. Process. Syst.,2019

2. Regret in online combinatorial optimization;Audibert;Math. Oper. Res.,2013

3. Mirror descent and nonlinear projected subgradient methods for convex optimization;Beck;Oper. Res. Lett.,2003

4. Convex optimization: Algorithms and complexity;Bubeck;Found. Trends Mach. Learn.,2015

5. Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow;Cai;Ann. Statist.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subspace Phase Retrieval;IEEE Transactions on Information Theory;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3