Nonlinear dimension reduction for surrogate modeling using gradient information

Author:

Bigoni Daniele1,Marzouk Youssef1,Prieur Clémentine2,Zahm Olivier2

Affiliation:

1. Center for Computational Science & Engineering , Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2. Université Grenoble Alpes , Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Abstract

Abstract We introduce a method for the nonlinear dimension reduction of a high-dimensional function $u:{\mathbb{R}}^d\rightarrow{\mathbb{R}}$, $d\gg 1$. Our objective is to identify a nonlinear feature map $g:{\mathbb{R}}^d\rightarrow{\mathbb{R}}^m$, with a prescribed intermediate dimension $m\ll d$, so that $u$ can be well approximated by $f\circ g$ for some profile function $f:{\mathbb{R}}^m\rightarrow{\mathbb{R}}$. We propose to build the feature map by aligning the Jacobian $\nabla g$ with the gradient $\nabla u$, and we theoretically analyze the properties of the resulting $g$. Once $g$ is built, we construct $f$ by solving a gradient-enhanced least squares problem. Our practical algorithm uses a sample $\{{\textbf{x}}^{(i)},u({\textbf{x}}^{(i)}),\nabla u({\textbf{x}}^{(i)})\}_{i=1}^N$ and builds both $g$ and $f$ on adaptive downward-closed polynomial spaces, using cross validation to avoid overfitting. We numerically evaluate the performance of our algorithm across different benchmarks, and explore the impact of the intermediate dimension $m$. We show that building a nonlinear feature map $g$ can permit more accurate approximation of $u$ than a linear $g$, for the same input data set.

Funder

JCJC

Mathematical Multifaceted Integrated Capabilities Center

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference59 articles.

1. Sufficient dimension reduction and prediction in regression;Adragni;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2009

2. ApproximationToolbox;Anthony,2020

3. A simple proof of the Poincaré inequality for a large class of probability measures;Bakry;Electron. Comm. Probab.,2008

4. Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds;Barshan;Pattern Recognition,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3