Sketch-and-solve approaches to k-means clustering by semidefinite programming

Author:

Clum Charles1,Mixon Dustin G12,O’Hare Kaiying34,Villar Soledad45

Affiliation:

1. Department of Mathematics, The Ohio State University , Columbus, Ohio , USA

2. Translational Data Analytics Institute, The Ohio State University , Columbus, Ohio , USA

3. Department of Electrical and Computer Engineering, The Ohio State University , Columbus, Ohio , USA

4. Department of Applied Mathematics & Statistics, Johns Hopkins University , Baltimore, Maryland , USA

5. Mathematical Institute for Data Science, Johns Hopkins University , Baltimore, Maryland , USA

Abstract

Abstract We study a sketch-and-solve approach to speed up the Peng–Wei semidefinite relaxation of $k$-means clustering. When the data are appropriately separated we identify the $k$-means optimal clustering. Otherwise, our approach provides a high-confidence lower bound on the optimal $k$-means value. This lower bound is data-driven; it does not make any assumption on the data nor how they are generated. We provide code and an extensive set of numerical experiments where we use this approach to certify approximate optimality of clustering solutions obtained by k-means++.

Funder

National Science Foundation

Air Force Office of Scientific Research

Air Force Office of Scientific Research Young Investigator Research Program award

Office of Naval Research

AI2AI Amazon

NSF–Simons Research Collaboration on the Mathematical and Scientific Foundations of Deep Learning

Publisher

Oxford University Press (OUP)

Reference49 articles.

1. Exact recovery in the stochastic block model;Abbe;IEEE Trans. Inf. Theory,2015

2. Community detection with a subsampled semidefinite program;Abdalla;Sampl. Theory Signal Process. Data Anal.,2022

3. NP-hardness of euclidean sum-of-squares clustering;Aloise;Mach. Learn.,2009

4. Relax, no need to round: integrality of clustering formulations;Awasthi;ITCS,2015

5. The hardness of approximation of euclidean k-means;Awasthi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3