ROIPCA: an online memory-restricted PCA algorithm based on rank-one updates

Author:

Mitz Roy1,Shkolnisky Yoel1

Affiliation:

1. School of Mathematical Sciences, Tel-Aviv University , Haim Levanon 55, Tel-Aviv 69978 , Israel

Abstract

Abstract Principal components analysis (PCA) is a fundamental algorithm in data analysis. Its memory-restricted online versions are useful in many modern applications, where the data are too large to fit in memory, or when data arrive as a stream of items. In this paper, we propose ROIPCA and fROIPCA, two online PCA algorithms that are based on rank-one updates. While ROIPCA is typically more accurate, fROIPCA is faster and has comparable accuracy. We show the relation between fROIPCA and an existing popular gradient algorithm for online PCA, and in particular, prove that fROIPCA is in fact a gradient algorithm with an optimal learning rate. We demonstrate numerically the advantages of our algorithms over existing state-of-the-art algorithms in terms of accuracy and runtime.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference49 articles.

1. First efficient convergence for streaming k-pca: a global, gap-free, and near-optimal rate;Allen-Zhu,2017

2. Stochastic optimization for pca and pls;Arora,2012

3. k-means++: The advantages of careful seeding;Arthur,2007

4. The fast convergence of incremental pca;Balsubramani;In Advances in neural information processing systems,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3