Computable error bounds for quasi-Monte Carlo using points with non-negative local discrepancy

Author:

Gnewuch Michael1,Kritzer Peter2,Owen Art B3,Pan Zexin3

Affiliation:

1. Department of Mathematics, University of Osnabrück , Albrechtstr. 28a, D-49076 Osnabrück, Germany

2. RICAM, Austrian Academy of Sciences , Altenbergerstr. 69, A-4040 Linz, Austria

3. Department of Statistics, Stanford University , Sequoia Hall, 390 Jane Stanford Way, Stanford, CA 94305-4020, USA

Abstract

Abstract Let $f:[0,1]^{d}\to{\mathbb{R}}$ be a completely monotone integrand as defined by Aistleitner and Dick (2015, Acta Arithmetica, 167, 143–171) and let points $\boldsymbol{x}_{0},\dots ,\boldsymbol{x}_{n-1}\in [0,1]^{d}$ have a non-negative local discrepancy (NNLD) everywhere in $[0,1]^{d}$. We show how to use these properties to get a non-asymptotic and computable upper bound for the integral of $f$ over $[0,1]^{d}$. An analogous non-positive local discrepancy property provides a computable lower bound. It has been known since Gabai (1967, Illinois J. Math., 11, 1–12) that the two-dimensional Hammersley points in any base $b\geqslant 2$ have NNLD. Using the probabilistic notion of associated random variables, we generalize Gabai’s finding to digital nets in any base $b\geqslant 2$ and any dimension $d\geqslant 1$ when the generator matrices are permutation matrices. We show that permutation matrices cannot attain the best values of the digital net quality parameter when $d\geqslant 3$. As a consequence the computable absolutely sure bounds we provide come with less accurate estimates than the usual digital net estimates do in high dimensions. We are also able to construct high-dimensional rank one lattice rules that are NNLD. We show that those lattices do not have good discrepancy properties: any lattice rule with the NNLD property in dimension $d\geqslant 2$ either fails to be projection regular or has all its points on the main diagonal. Complete monotonicity is a very strict requirement that for some integrands can be mitigated via a control variate.

Funder

U.S. National Science Foundation

Austrian Science Fund

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3