Linear convergence of the subspace constrained mean shift algorithm: from Euclidean to directional data

Author:

Zhang Yikun1,Chen Yen-Chi1

Affiliation:

1. Department of Statistics , University of Washington, Seattle, WA 98195, USA

Abstract

Abstract This paper studies the linear convergence of the subspace constrained mean shift (SCMS) algorithm, a well-known algorithm for identifying a density ridge defined by a kernel density estimator. By arguing that the SCMS algorithm is a special variant of a subspace constrained gradient ascent (SCGA) algorithm with an adaptive step size, we derive the linear convergence of such SCGA algorithm. While the existing research focuses mainly on density ridges in the Euclidean space, we generalize density ridges and the SCMS algorithm to directional data. In particular, we establish the stability theorem of density ridges with directional data and prove the linear convergence of our proposed directional SCMS algorithm.

Funder

National Science Foundation

CAREER

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference120 articles.

1. An extrinsic look at the riemannian hessian;Absil,2013

2. A sufficient condition for the convergence of the mean shift algorithm with gaussian kernel;Aliyari Ghassabeh;J. Multivariate Anal.,2015

3. Degenerate nonlinear programming with a quadratic growth condition;Anitescu;SIAM J. Optim.,2000

4. Geologically current motion of 56 plates relative to the no-net-rotation reference frame;Argus;Geochemistry, Geophysics, Geosystems,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-speed parallel segmentation algorithms of MeanShift for litchi canopies based on Spark and Hadoop;International Journal of Modeling, Simulation, and Scientific Computing;2024-05-04

2. sconce: a cosmic web finder for spherical and conic geometries;Monthly Notices of the Royal Astronomical Society;2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3