Affiliation:
1. Alan Turing Institute, London, UK
2. Department of Electrical Engineering, Colorado School of Mines, Golden, CO, USA
3. Department of Mathematics University of Texas at Austin, Austin, TX, USA
Abstract
Abstract
Leverage scores, loosely speaking, reflect the importance of the rows and columns of a matrix. Ideally, given the leverage scores of a rank-r matrix $M\in \mathbb{R}^{n\times n}$, that matrix can be reliably completed from just $O (rn\log ^{2}n )$ samples if the samples are chosen randomly from a non-uniform distribution induced by the leverage scores. In practice, however, the leverage scores are often unknown a priori. As such, the sample complexity in uniform matrix completion—using uniform random sampling—increases to $O(\eta (M)\cdot rn\log ^{2}n)$, where η(M) is the largest leverage score of M. In this paper, we propose a two-phase algorithm called MC2 for matrix completion: in the first phase, the leverage scores are estimated based on uniform random samples, and then in the second phase the matrix is resampled non-uniformly based on the estimated leverage scores and then completed. For well-conditioned matrices, the total sample complexity of MC2 is no worse than uniform matrix completion, and for certain classes of well-conditioned matrices—namely, reasonably coherent matrices whose leverage scores exhibit mild decay—MC2 requires substantially fewer samples. Numerical simulations suggest that the algorithm outperforms uniform matrix completion in a broad class of matrices and, in particular, is much less sensitive to the condition number than our theory currently requires.
Funder
National Science Foundation Career
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献