Affiliation:
1. Inria, Université de Lille, CNRS, Laboratoire de mathématiques Painlevé , 59650 Villeneuve d’Ascq , France
Abstract
Abstract
Clustering bipartite graphs is a fundamental task in network analysis. In the high-dimensional regime where the number of rows $n_{1}$ and the number of columns $n_{2}$ of the associated adjacency matrix are of different order, the existing methods derived from the ones used for symmetric graphs can come with sub-optimal guarantees. Due to increasing number of applications for bipartite graphs in the high-dimensional regime, it is of fundamental importance to design optimal algorithms for this setting. The recent work of Ndaoud et al. (2022, IEEE Trans. Inf. Theory, 68, 1960–1975) improves the existing upper-bound for the misclustering rate in the special case where the columns (resp. rows) can be partitioned into $L = 2$ (resp. $K = 2$) communities. Unfortunately, their algorithm cannot be extended to the more general setting where $K \neq L \geq 2$. We overcome this limitation by introducing a new algorithm based on the power method. We derive conditions for exact recovery in the general setting where $K \neq L \geq 2$, and show that it recovers the result in Ndaoud et al. (2022, IEEE Trans. Inf. Theory, 68, 1960–1975). We also derive a minimax lower bound on the misclustering error when $K=L$ under a symmetric version of our model, which matches the corresponding upper bound up to a factor depending on $K$.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献