Sketching for large-scale learning of mixture models

Author:

Keriven Nicolas1,Bourrier Anthony2,Gribonval Rémi1,Pérez Patrick3

Affiliation:

1. Univ Rennes, Inria, CNRS, IRISA Campus de Beaulieu, Rennes Cedex, France

2. Gipsa-Lab, 11 rue des Mathématiques, Saint-Martin-d’Hères, France

3. Technicolor, 975 Avenue des Champs Blancs, Cesson Sévigné, France

Abstract

Abstract Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a ‘compressive learning’ framework, where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian mixture model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical expectation-maximization technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over $10^{8}$ training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive preliminary information preservation guarantees, in the spirit of infinite-dimensional compressive sensing.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference113 articles.

1. Database-friendly random projections. Principles of Database Systems (PODS).;Achlioptas,2001

2. The Multivariate Gaussian Probability Distribution.;Ahrendt,2005

3. Theory of reproducing kernels.;Aronzajn;Trans. Amer. Math. Soc.,1950

4. Compressive sensing.;Baraniuk;IEEE Signal Process. Mag.,2007

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3