Affiliation:
1. Department of Mathematics, The University of British Columbia , 1984 Mathematics Rd, V6T 1Z2 Vancouver, BC , Canada
Abstract
Abstract
In this paper, we study the high-dimensional super-resolution imaging problem. Here, we are given an image of a number of point sources of light whose locations and intensities are unknown. The image is pixelized and is blurred by a known point-spread function arising from the imaging device. We encode the unknown point sources and their intensities via a non-negative measure and we propose a convex optimization program to find it. Assuming the device’s point-spread function is componentwise decomposable, we show that the optimal solution is the true measure in the noiseless case, and it approximates the true measure well in the noisy case with respect to the generalized Wasserstein distance. Our main assumption is that the components of the point-spread function form a Tchebychev system ($T$-system) in the noiseless case and a $T^{*}$-system in the noisy case, mild conditions that are satisfied by Gaussian point-spread functions. Our work is a generalization to all dimensions of the work [14] where the same analysis is carried out in two dimensions. We also extend results in [27] to the high-dimensional case when the point-spread function decomposes.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Super-resolution of positive near-colliding point sources;Information and Inference: A Journal of the IMA;2023-09-18