Computational complexity versus statistical performance on sparse recovery problems

Author:

Roulet Vincent1,Boumal Nicolas2,d’Aspremont Alexandre3

Affiliation:

1. Département d’Informatique de l’Ecole Normale Supérieure, INRIA Sierra Team, Université de Recherche Paris Sciences et Lettres, Paris, France

2. Princeton University, Princeton NJ, USA

3. CNRS, Département d’informatique de l’Ecole Normale Supérieure, Paris, France

Abstract

Abstract We show that several classical quantities controlling compressed-sensing performance directly match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart schemes on first-order methods solving a broad range of compressed-sensing problems, where sharpness at the optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be recovered by the observation matrix. In a similar vein, Renegar’s condition number is a data-driven complexity measure for convex programmes, generalizing classical condition numbers for linear systems. We show that for a broad class of compressed-sensing problems, the worst case value of this algorithmic complexity measure taken over all signals matches the restricted singular value of the observation matrix which controls robust recovery performance. Overall, this means in both cases that, in compressed-sensing problems, a single parameter directly controls both computational complexity and recovery performance. Numerical experiments illustrate these points using several classical algorithms.

Funder

European Research Council

AMX fellowship

National Science Foundation

Fonds AXA pour la Recherche

Google Focused Award

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference64 articles.

1. Fast global convergence of gradient methods for high-dimensional statistical recovery;Agarwal;Ann. Stat.,2012

2. Gordon’s inequality and condition numbers in conic optimization;Amelunxen,2014

3. Living on the edge: Phase transitions in convex programs with random data;Amelunxen,2014

4. Sparse recovery of streaming signals using L1-homotophy;Asif;IEEE Trans. Signal Process.,2014

5. A fast iterative shrinkage-thresholding algorithm for linear inverse problems;Beck;SIAM J. Imaging Sci.,2009

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NESTANets: stable, accurate and efficient neural networks for analysis-sparse inverse problems;Sampling Theory, Signal Processing, and Data Analysis;2022-12-20

2. WARPd: A Linearly Convergent First-Order Primal-Dual Algorithm for Inverse Problems with Approximate Sharpness Conditions;SIAM Journal on Imaging Sciences;2022-09

3. Fourier Transforms and Series;Compressive Imaging: Structure, Sampling, Learning;2021-09-16

4. Convex Analysis and Convex Optimization;Compressive Imaging: Structure, Sampling, Learning;2021-09-16

5. Probability;Compressive Imaging: Structure, Sampling, Learning;2021-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3