Residual Effects of Insecticides on Deraeocoris brevis (Hemiptera: Miridae)

Author:

Amarasekare Kaushalya G1,Shearer Peter W2

Affiliation:

1. Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN

2. Strawberry Center, California Polytechnic State University, San Luis Obispo, CA

Abstract

Abstract Deraeocoris brevis (Uhler) is a key predatory natural enemy of insects and mites in pear orchards in the United States. Insecticides used for crop protection in pear orchards and their residues can negatively affect populations of D. brevis. The focus of this study was to investigate the field-aged residual effects of lambda-cyhalothrin, spinetoram, and chlorantraniliprole insecticides on D. brevis through contact exposure. An airblast sprayer was used to apply the high label rate of insecticides on pear trees. Leaves were collected from the experimental trees at 1 d after treatment (DAT) and then at 7-d intervals up to 21 DAT. Adults and nymphs were exposed to leaves with insecticide residues or untreated control for 72 h in the laboratory. The nymphs that survived the treatments were reared until they emerged as adults. The surviving paired adults were reared until death. The treated nymphs were assessed for acute mortality, survival, developmental time, and the sex ratio if they emerged as adults. The treated adults were assessed for acute and chronic mortality, fecundity, fertility, and longevity. Both nymphs and adults exposed to leaf residues of lambda-cyhalothrin had significantly higher acute mortality compared with the insects exposed to the control. When compared with the control treatment, the toxicity of field-aged residues of lambda-cyhalothrin, chlorantraniliprole, and spinetoram can persist over a longer period of time. Similar patterns were observed in previous laboratory and field experiments on D. brevis. We discuss the residual effects of three insecticides through contact exposure of D. brevis.

Funder

USDA–NIFA SCRI

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3