Targeted Mutations in Xylella fastidiosa Affect Acquisition and Retention by the Glassy-Winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae)

Author:

Sengoda Venkatesan G1,Shi Xiangyang1,Krugner Rodrigo1,Backus Elaine A1,Lin Hong1

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA

Abstract

Abstract Xylella fastidiosa (Wells) is a xylem-limited bacterium that causes Pierce’s disease of grapevines. The bacterium is transmitted by insect vectors such as the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). Experiments were conducted to compare the role of selected X. fastidiosa genes on 1) bacterial acquisition and retention in GWSS foreguts, and 2) transmission to grapevines by GWSS. Bacterial genotypes used were: mutants Xf-ΔpilG, Xf-ΔpilH, Xf-ΔgacA, and Xf-ΔpopP; plus wild type (WT) as control. Results showed that Xf-ΔpilG had enhanced colonization rate and larger numbers in GWSS compared with WT. Yet, Xf-ΔpilG exhibited the same transmission efficiency as WT. The Xf-ΔpilH exhibited poor acquisition and retention. Although initial adhesion, multiplication, and retention of Xf-ΔpilH in GWSS were almost eliminated compared with WT, the mutation did not reduce transmission success in grapevines. Overall, Xf-ΔgacA showed colonization rates and numbers in foreguts similar to WT. The Xf-ΔgacA mutation did not affect initial adhesion, multiplication, and long-term retention compared with WT, and was not significantly diminished in transmission efficiency. In contrast, numbers of Xf-ΔpopP were variable over time, displaying greatest fluctuation from highest to lowest levels. Thus, Xf-ΔpopP had a strong, negative effect on initial adhesion, but adhered and slowly multiplied in the foregut. Again, transmission was not diminished compared to WT. Despite reductions in acquisition and retention by GWSS, transmission efficiency of genotypes to grapevines was not affected. Therefore, in order to stop the spread of X. fastidiosa by GWSS using gene-level targets, complete disruption of bacterial colonization mechanisms is required.

Funder

United States Department of Agriculture-Agricultural Research Service

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3