Observations of photospheric magnetic structure below a dark filament using the Hinode Spectro-Polarimeter

Author:

Yokoyama Takaaki1,Katsukawa Yukio23,Shimojo Masumi23

Affiliation:

1. Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2. National Astronomical Observatory of Japan, NINS, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

3. Department of Astronomical Science, SOKENDAI (The Graduate University of Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Abstract

Abstract The structure of the photospheric vector magnetic field below a dark filament on the Sun is studied using the observations of the Spectro-Polarimeter attached to the Solar Optical Telescope onboard Hinode. Special attention is paid to discriminating between two suggested models, a flux rope or a bent arcade. “Inverse polarity” orientation is possible below the filament in a flux rope, whereas “normal polarity” can appear in both models. We study a filament in the active region NOAA 10930, which appeared on the solar disk during 2006 December. The transverse field perpendicular to the line of sight has a direction almost parallel to the filament spine with a shear angle of 30°, the orientation of which includes the 180° ambiguity. To know whether it is in the normal orientation or in the inverse one, the center-to-limb variation is used for the solution under the assumption that the filament does not drastically change its magnetic structure during the passage. When the filament is near the east limb, we found that the line-of-site magnetic component below the filament is positive, while it is negative near the west limb.This change of sign indicates that the horizontal photospheric field perpendicular to the polarity inversion line beneath the filament has an “inverse-polarity”, which indicates a flux-rope structure of the filament supporting field.

Funder

ISAS

JAXA

NAOJ

NASA

STFC

ESA

NSC

JSPS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3