YZ Phoenicis: a very short period K-type contact binary with variation of the O’Connell effect and orbital period change

Author:

Sarotsakulchai Thawicharat123,Qian Sheng-Bang1245,Soonthornthum Boonrucksar3,Zhou Xiao145,Zhang Jia145,Li Lin-Jia145,Reichart Daniel E6,Haislip Joshua B6,Kouprianov Vladimir V6,Poshyachinda Saran3

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences, 650216 Kunming, China

2. University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan, 100049 Beijing, China

3. National Astronomical Research Institute of Thailand, Donkaew, Maerim, Chiang Mai 50180, Thailand

4. Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, 650216 Kunming, China

5. Center for Astronomical Mega-Science, Chinese Academy of Sciences, 20A Datun Rd., Chaoyang District, 100012 Beijing, China

6. Department of Physics and Astronomy, University of North Carolina, CB #3255, Chapel Hill, NC 27599, USA

Abstract

Abstract YZ Phe is a very short-period contact binary (Sp. = K2 V) with an orbital period of 0.2347 d near the short period limit (0.22 d). We present the complete light curves which photometric data were obtained from the 60 cm telescope of PROMPT-8 at CTIO in Chile during 2016 June to October and 2017 August. The photometric solutions were determined by using the Wilson & Devinney code and the results reveal that YZ Phe is a W-subtype shallow contact binary ($f\sim 10\,$, q = 2.635, or 1/q = 0.379 for W subtype) with rotational motion of a large hot spot on the more massive component, showing a strong O’Connell effect with variation of maxima in photometric time series at period of 4.20 yr and stellar cycle at period of 1.28 yr. By compiling all available eclipse times, the result shows a long-term period decrease at a rate of dP/dt = −2.64(±0.02) × 10−8 d yr−1, superimposed on a cyclic variation (A3 = 0.0081 d and P3 = 40.76 yr). This variation cannot be explained by the Applegate mechanism. Thus, the cyclic change may be interpreted as the light-travel time effect via the presence of a cool third body. Based on photometric solutions, the third light was detected as $2\,$ of the total light in V and I bands. These results support the existence of a third body. The long-term period decrease can be explained by mass transfer from the more massive component ($M_2 \sim 0.74\, M_{\odot }$) to the less massive one ($M_1 \sim 0.28\, M_{\odot }$) or plus angular momentum loss (AML) via magnetic braking. With 1/q < 0.4 and long-term period decrease, all factors suggest that YZ Phe is on the AML-controlled state and its fill-out factor will increase, as well as the system evolving into a deeper normal contact binary.

Funder

Chinese Natural Science Foundation

Yunnan Natural Science Foundation

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3