Radiative shocks in spherical accretion

Author:

Fukue Jun1

Affiliation:

1. Astronomical Institute, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582

Abstract

ABSTRACT In order to explore various aspects of radiative shocks, we examine standing radiative shock waves in spherical accretion flows onto a central gravitating body under the equilibrium diffusion approximation. In contrast to the usual one-dimensional shock, in radiative shocks a radiative precursor appears in the pre-shock region before the shock front, due to the radiative diffusion effect. Furthermore, in spherical flows around a central object the gravitational potential varies in this radiative precursor, and a curvature effect also exists. We first formulate such radiative shocks in spherical flows, derive the overall jump conditions, and solve the structure of the radiative precursor for both the gas and radiation pressure dominated cases. Since the jump conditions contain the coordinates of both ends of the radiative precursor, we must obtain both the solution and the endpoints of the precursor simultaneously. We find that the gravitational effect is not significant, although it cannot be ignored. The curvature effect exerts a strong influence on the structure and width of the precursor. The precursor starting point x1 normalized by the shock radius is roughly expressed by $x_1={\cal M}_1^{1/7}$ for a radiation pressure dominated shock, while $x_1=1.21^{({\cal M}_1-1)}$ for a gas pressure one, where ${\cal M}_1$ is the pre-shock Mach number.

Funder

Grant-in-Aid for Scientific Research

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disc accretion shocks with alpha viscosity;Monthly Notices of the Royal Astronomical Society;2021-07-16

2. Radiative shocks around super-eddington accreting black holes;Monthly Notices of the Royal Astronomical Society;2021-02-13

3. Relativistic Radiation Hydrodynamics;Astronomy and Astrophysics Library;2020

4. Wave and Instability in Radiative Fluids;Astronomy and Astrophysics Library;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3