Affiliation:
1. Department of Public Health Sciences, University of Chicago , Chicago, IL, USA
2. Institute for Population and Precision Health, University of Chicago , Chicago, IL, USA
Abstract
Abstract
Background
Perceived discrimination in health care settings can have adverse consequences on mental health in minority groups. However, the association between perceived discrimination and mental health is prone to unmeasured confounding. The study aims to quantitatively evaluate the influence of unmeasured confounding in this association, using g-estimation.
Methods
In a predominantly African American cohort, we applied g-estimation to estimate the association between perceived discrimination and mental health, adjusted and unadjusted for measured confounders. Mental health was measured using clinical diagnoses of anxiety, depression and bipolar disorder. Perceived discrimination was measured as the number of patient-reported discrimination events in health care settings. Measured confounders included demographic, socioeconomic, residential and health characteristics. The influence of confounding was denoted as α1 from g-estimation. We compared α1 for measured and unmeasured confounding.
Results
Strong associations between perceived discrimination in health care settings and mental health outcomes were observed. For anxiety, the odds ratio (95% confidence interval) unadjusted and adjusted for measured confounders were 1.30 (1.21, 1.39) and 1.26 (1.17, 1.36), respectively. The α1 for measured confounding was –0.066. Unmeasured confounding with α1=0.200, which was over three times that of measured confounding, corresponds to an odds ratio of 1.12 (1.01, 1.24). Similar results were observed for other mental health outcomes.
Conclusion
Compared with measured confounding, unmeasured that was three times measured confounding was not enough to explain away the association between perceived discrimination and mental health, suggesting that this association is robust to unmeasured confounding. This study provides a novel framework to quantitatively evaluate unmeasured confounding.
Funder
NIH
University of Chicago Medicine Comprehensive Cancer Center
Publisher
Oxford University Press (OUP)