M-estimation for common epidemiological measures: introduction and applied examples

Author:

Ross Rachael K1ORCID,Zivich Paul N23,Stringer Jeffrey S A4,Cole Stephen R3

Affiliation:

1. Department of Epidemiology, Mailman School of Public Health, Columbia University , New York, NY, USA

2. Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

3. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

4. Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina , Chapel Hill, NC, USA

Abstract

Abstract M-estimation is a statistical procedure that is particularly advantageous for some comon epidemiological analyses, including approaches to estimate an adjusted marginal risk contrast (i.e. inverse probability weighting and g-computation) and data fusion. In such settings, maximum likelihood variance estimates are not consistent. Thus, epidemiologists often resort to bootstrap to estimate the variance. In contrast, M-estimation allows for consistent variance estimates in these settings without requiring the computational complexity of the bootstrap. In this paper, we introduce M-estimation and provide four illustrative examples of implementation along with software code in multiple languages. M-estimation is a flexible and computationally efficient estimation procedure that is a powerful addition to the epidemiologist’s toolbox.

Funder

National Institute of Drug Abuse

National Institute of Allergy and Infectious Diseases

National Institutes of Health

Gates Foundation

Publisher

Oxford University Press (OUP)

Reference23 articles.

1. Maximum likelihood, profile likelihood, and penalized likelihood: a primer;Cole;Am J Epidemiol,2014

2. The calculus of M-estimation;Stefanski;Am Stat,2002

3. An introduction to g methods;Naimi;Int J Epidemiol,2017

4. Illustration of two fusion designs and estimators;Cole;Am J Epidemiol,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing epidemiological methods: from innovation to communication;International Journal of Epidemiology;2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3