A One-Step Multiplex PCR Method to Rapidly Distinguish Two Strains of Diglyphus wani (Hymenoptera: Eulophidae) Against Agromyzid Leafminers

Author:

Du Su-Jie1ORCID,Xu Shi-Yun12,Guo Jian-Yang1,Ye Fu-Yu1ORCID,Wan Wei-Jie1,Liu Wan-Xue1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing, 100193 , China

2. College of Life Sciences, Hunan Normal University , Changsha, Hunan, 410081 , China

Abstract

Abstract Hymenopteran parasitoids generally show a haplo-diploid sex determination system. Haploid males are produced from unfertilized eggs, whereas diploid females develop from fertilized eggs (arrhenotokous). In some cases, diploid females develop from unfertilized eggs (thelytokous). Diglyphus wani (Hymenoptera: Eulophidae) is a biological control agent for agromyzid leafminers and have arrhenotokous and thelytokous strains. However, the morphological characteristics of two strains of D. wani are so similar that it is difficult to accurately distinguish them based on morphology. Here, a rapid molecular identification method was developed based on the mitochondrial gene cytochrome c oxidase I (COI) and one-step multiplex PCR. Two primer combinations, PC1 (Ar-F1/Th-F1/WR2) and PC2 (Ar-F1/Th-F4/WR2), were designed and repeatedly screened to distinguish two strains simultaneously, of which two special forward primers Th-F1/Th-F4 were used for the thelytokous strain and one special forward primer Ar-F1 was used for the arrhenotokous strain. In addition, a common reverse primer, WR2, was used for both strains. The PC1 and PC2 PCR assays were effective in distinguishing the two strains at different developmental stages and field colonies. This method provides a reliable, highly sensitive, and cost-effective tool for the rapid identification of the two strains of D. wani.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3