Foliar Residual Toxicity of Insecticides to Brassica Pests and Their Natural Enemies

Author:

Anjum Farida1ORCID,Wright Denis J1

Affiliation:

1. Department of Life Sciences, Imperial College London , Silwood Park Campus, Ascot, SL5 7PY , UK

Abstract

Abstract Overuse of pesticides can result in the development of resistance, secondary pest outbreaks, and pest resurgence due to a reduction in natural enemies. The present study compares the residual toxicity of lambda-cyhalothrin, a relatively nonselective insecticide, with abamectin, indoxacarb, and spinosad, compounds which have been reported to be less harmful to arthropod natural enemies. Two key cosmopolitan pests of crucifer crops, (Plutella xylostella) and (Myzus persicae), and two of their respective hymenopteran parasitoids, (Cotesia vestalis) and (Aphidius colemani) were used as representative pests and natural enemies. The pyrethroid lambda-cyhalothrin was found to be the most persistent toxicant against both pest and both parasitoid species tested, while the lactones abamectin and spinosad were the least persistent toxicants. A leaf wax stripping technique was used to compare the contact toxicity of insecticide residues against adult C. vestalis and A. colemani in the epicuticular wax layer. For each compound, removal of epicuticular wax reduced the 24 h residual toxicity (LC50) of fresh deposits (day 0) by about an order of magnitude against C. vestalis. A second residual toxicity experiment showed that removal of epicuticular wax significantly reduced the residual toxicity of each compound against A. colemani at 0, 7, and 14 d after application, with little or no detectable residual activity for the oxadiazine indoxacarb or abamectin/spinosad respectively after 14 d. The present data supports the view that in addition to the intrinsic toxicity of insecticides to natural enemies, differences in their persistence as foliar residues should also be considered in IPM systems.

Funder

Higher Education Commission

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Reference41 articles.

1. Pesticides usage in cabbage (Brassica oleracea) cultivation in the forest ecozone of Ghana;Amoako;Int. J. Res. Chem. Environ,2012

2. Relative toxicity of insecticides to the crucifer pests Plutella xylostella and Myzus persicae and their natural enemies;Anjum;Crop Protect,2016

3. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin;Bai;Chemosphere,2016

4. .;Baker,1994

5. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae;Bass;Insect Biochem. Molec. Biol,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3