Detectability of Hibiscus Mealybug, Nipaecoccus viridis (Hemiptera: Pseudoccocidae), DNA in the Mealybug Destroyer, Cryptolaemus montrouzieri (Coleoptera: Coccinellidae), and Survey of Its Predators in Florida Citrus Groves

Author:

Gaines Kristen C1,Stelinski Lukasz L1ORCID,Neupane Surendra2,Diepenbrock Lauren M1ORCID

Affiliation:

1. Department of Entomology and Nematology, UF/IFAS Citrus Research and Education Center, University of Florida , 700 Experiment Station Road, Lake Alfred, FL 33850 , USA

2. School of Forest, Fisheries, and Geomatics Sciences, University of Florida , 136 Newins-Ziegler Hall, Gainesville, FL 32611 , USA

Abstract

Abstract The Hibiscus mealybug, Nipaecoccus viridis (Newstead), has recently established in Florida citrus and become a pest of concern given secondary pest outbreaks associated with management of citrus greening disease. Chemical controls used to manage other citrus arthropod pests are not as effective against N. viridis due to its waxy secretions, clumping behavior, and induced cellular changes to host plant tissue which increase microhabitats. Populations of this mealybug pest are regulated by natural enemies in its native region, but it remains unclear if resident natural enemies in Florida citrus could similarly suppress N. viridis populations. This investigation: 1) established species-specific primers for N. viridis based on the mitochondrial gene Cytochrome-oxidase 1 (COI), 2) determined duration of N. viridis DNA detectability in a known predator, the mealybug destroyer (Cryptolaemus montrouzieri Mulsant), by using identified primers in molecular gut content analysis, and 3) screened field-collected predators for the presence of N. viridis DNA. The detection rate of N. viridis DNA was >50% at 36 h after adult C. montrouzieri feeding but DNA was no longer detectable by 72 h after feeding. Field-collected predators were largely comprised of spiders, lacewings, and C. montrouzieri. Spiders, beetles (primarily C. montrouzieri), and juvenile lacewings were the most abundant predators of N. viridis, with 17.8, 43.5, and 58.3 of field-collected samples testing positive for N. viridis DNA, respectively. Our results indicate that Florida citrus groves are hosts to abundant predators of N. viridis and encourage the incorporation of conservation or augmentative biological control for management of this pest.

Funder

Citrus Research and Development Foundation

U.S. Department of Agriculture Current Research Information System

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3