Likelihood of Extreme Early Flight of Myzus persicae (Hemiptera: Aphididae) Across the UK

Author:

Hemming Deborah12ORCID,Bell James3,Collier Rosemary4,Dunbar Tyrone1,Dunstone Nick1,Everatt Matthew5,Eyre Dominic5,Kaye Neil1,Korycinska Anastasia5,Pickup Jon6,Scaife Adam A17

Affiliation:

1. Hadley Centre, Met Office , Exeter , UK

2. Birmingham Institute of Forest Research, Birmingham University , Birmingham , UK

3. Rothamsted Insect Survey, Rothamsted Research , West Common, Harpenden , UK

4. Warwick Crop Centre, School of Life Sciences, University of Warwick , Wellesbourne Campus, Warwick , UK

5. Defra , York Biotech Campus, York , UK

6. Science and Advice for Scottish Agriculture , Scottish Government, Edinburgh , UK

7. College of Engineering, Mathematics and Physical Sciences, University of Exeter , Exeter , UK

Abstract

Abstract Myzus persicae (Sulzer, Hemiptera: Aphididae) is a major global crop pest; it is the primary aphid vector for many damaging viruses and has developed resistance to most insecticides. In temperate regions, the risk of widespread crop infection and yield loss is heightened following warm winters, which encourage rapid population growth and early flight. Estimates of the frequency and magnitude of warm winters are, therefore, helpful for understanding and managing this risk. However, it is difficult to quantify the statistical distribution of climate events, particularly extremes, because climate observations represent just a small sample of the possible climate variations in a region. The purpose of this study was to establish a large-scale relationship between temperature and M. persicae observations across the UK and apply this to a very large ensemble of climate model simulations, which better sample the variability in climate, to quantify the current likelihood of extreme early M. persicae flight across the UK. The timing of M. persicae flight was shown to be significantly related to January-February mean temperature, where a 1°C warmer/cooler temperature relates to about 12 d earlier/later flight. Climate model simulations predict 40% likelihood of experiencing a year with unprecedented early M. persicae flight during the next decade in the UK. Results from this method can help crop managers assess the long-term viability of crops and management practices across the UK and provide early warning information for targeting pest surveillance activities on the locations and timings at highest risk of early M. persicae flight.

Funder

UK Government Department for Business, Energy and Industrial Strategy

Department for Environment, Food and Rural Affairs

Biotechnology and Biological Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3