Evaluating the Potential of Brood Recapping to Select Varroa destructor (Acari: Varroidae) Resistant Honey Bees (Hymenoptera: Apidae)

Author:

Guichard Matthieu1ORCID,von Virag Adrien1,Dainat Benjamin1ORCID

Affiliation:

1. Swiss Bee Research Centre, Agroscope , Bern , Switzerland

Abstract

Abstract Several resistance traits have been proposed to select honey bees (Apis mellifera L.) that can survive in the presence of parasitic mite Varroa destructor (Anderson and Trueman) and enable a more sustainable apiculture. The interest for uncapping-recapping has recently increased following its identification in several naturally surviving honey bee populations, yet the utility of this trait for human-mediated selection is poorly known. Here, we evaluated the repeatability of recapping and its correlations with mite infestation levels, and assessed the expression of the trait in the often neglected drone brood. We also calculated correlations between recapping, mite infertility, and mite fecundity, expressed either at the level of individual brood cells or of the whole colony. Recapping measured in worker brood showed moderate repeatability (ranging between 0.30 and 0.46). Depending on sample, recapping slightly correlated negatively with colony infestation values. Recapping was also measured in drone brood, with values often comparable to recapping in worker brood, but no significant correlations were obtained between castes. At cell level, recapped cells in drone brood (but not in workers) were significantly less infested than nonrecapped cells, whereas in workers (but not in drones), recapped cells hosted mites with significantly lower fecundity. At colony level, with a few exceptions, recapping did not significantly correlate with mite infertility and fecundity, caste, sample, or number of infested cells considered. These results indicate limited possibilities of impeding mite reproduction and possibly mite infestation of honey bee colonies by recapping, which would need to be confirmed on larger, different populations.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3