A combined subunit vaccine comprising BP26, Omp25 and L7/L12 against brucellosis

Author:

Gupta Sonal1,Singh Damini1,Gupta Manish1,Bhatnagar Rakesh12

Affiliation:

1. Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India

2. Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India

Abstract

ABSTRACT The current vaccines against brucellosis, namely Brucella abortus strains 19 and RB51, prevent infection in animals but pose potential risks like virulence and attenuation reversal. In this milieu, although subunit vaccination using a single potent immunogen of B. abortus, e.g. BP26 or Omp25 or L7/L12 etc., appears as a safer alternative, nonetheless it confers inadequate protection against the zoonosis compared to attenuated vaccines. Hence, we have investigated the prophylactic potential of a combined subunit vaccine (CSV) comprising the BP26, Omp25 and L7/L12 antigens of B. abortus, in mice model. Sera obtained from CSV immunized mice groups showed heightened IgG titers against all the three components and exhibited specificity upon immunoblotting, reiterating their authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen revealed a predominant Th2 immune response in CSV immunized mice group. However, on assessing the levels of Th1-dependent (IFN-γ and TNF-α) and Th2-dependent (IL-4 and IL-10) cytokines in different formulations, prominent IFN-γ levels were elicited in CSV immunized mice. Further, upon infection with virulent B. abortus 544, the combined subunit vaccinated mice displayed superior degree of protection (Log10 reduction) than the individual vaccines; however, B. abortus S19 showed the highest protection. Altogether, this study suggests that co-immunization of three B. abortus immunogens as a CSV complements and triggers a mixed Th1/Th2 immune response leading to superior degree of protection against pathogenic B. abortus 544 infection.

Funder

Department of Biotechnology

Council of Scientific and Industrial Research, Government of India

Department of Health Research

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3