Hyperglycemia suppresses the regulatory effect of hypoxia-inducible factor-1α in pulmonary Aspergillus fumigatus infection

Author:

Ye Yao1,Chen Yu2,Sun Jianjun1,Zhang Hanyin1,Meng Yanling1,Li Wenyang1,Wang Wei1

Affiliation:

1. Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, 110000, China

2. Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110000, China

Abstract

ABSTRACT Aspergillus fumigatus is one of the most common fungal infections involved in the pulmonary diseases. Hypoxia-inducible factor-1α (HIF-1α) is important for antifungal immunity. Diabetes is a risk factor of pulmonary A. fumigatus infection and could affect the expression of HIF-1α. The aim of this investigation was to evaluate the role of HIF-1α in pulmonary A. fumigatus infection in diabetes. In murine model, we found diabetic mice had aggravated pulmonary A. fumigatus infection and declined expression of HIF-1α following pulmonary A. fumigatus infection. And these changes could be corrected by dimethyloxalylglycine (DMOG), the agonist of HIF-1α. In cell experiment, after A. fumigatus stimulation, hyperglycemic state was with a decreased HIF-1α expression and increased NLRP3/IL-1β signal pathway. The percentages of Th1 and Treg cells decreased, while percentages of Th2 and Th17 increased in hyperglycemic group. DMOG suppressed A. fumigatus-stimulated NLRP3 and IL-1β expressions in hyperglycemic group and corrected Th and Treg cells differentiation. These regulatory effects of DMOG could be dampened by activating of NLRP3. These data indicated that hyperglycemia suppressed the regulatory effect of HIF-1α in pulmonary A. fumigatus infection, which can affect Th and Treg cells differentiation by regulating the NLRP3/IL-1β signal pathway.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3