Nur77 influences immunometabolism to regulate the release of proinflammatory cytokines and the formation of lipid bodies during Mycobacterium tuberculosis infection of macrophages

Author:

Birari Pankaj1,Mal Soumya2,Majumder Debayan1,Sharma Arun K1,Kumar Manish1,Das Troyee2,Ghosh Zhumur2,Jana Kuladip2,Gupta Umesh D3,Kundu Manikuntala1ORCID,Basu Joyoti1ORCID

Affiliation:

1. Department of Chemical Sciences, Bose Institute , 93/1 APC Road, Kolkata 700009 , India

2. Department of Biological Sciences, Bose Institute, Unified Academic Campus , EN 80, Sector V, Bidhan Nagar, Kolkata 700091 , India

3. National JALMA Institute of Leprosy and Other Mycobacterial Disease , Agra 282001 , India

Abstract

Abstract Infection of macrophages with Mycobacterium tuberculosis induces innate immune responses designed to clear the invading bacterium. However, bacteria often survive within the intracellular environment by exploiting these responses triggered by macrophages. Here, the role of the orphan nuclear receptor Nur77 (Nr4a1) in regulating the response of macrophages infected with M. tuberculosis (Mtb) has been delineated. Nur77 is induced early during infection, regulates metabolism by binding directly at the promoter of the TCA cycle enzyme, isocitrate dehydrogenase 2 (IDH2), to act as its repressor, and shifts the balance from a proinflammatory to an anti-inflammatory phenotype. Depletion of Nur77 increased transcription of IDH2 and, consequently, the levels of intracellular succinate, leading to enhanced levels of the proinflammatory cytokine IL-1β. Further, Nur77 inhibited the production of antibacterial nitric oxide and IL-1β in a succinate dehydrogenase (SDH)-dependent manner, suggesting that its induction favors bacterial survival by suppressing bactericidal responses. Indeed, depletion of Nur77 inhibited the intracellular survival of Mtb. On the other hand, depletion of Nur77 enhanced lipid body formation, suggesting that the fall in Nur77 levels as infection progresses likely favors foamy macrophage formation and long-term survival of Mtb in the host milieu.

Funder

J.C. Bose Fellowship

Council of Scientific and Industrial Research, India

Department of Biotechnology, Ministry of Science and Technology, India

Indian Council of Medical Research

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3