Affiliation:
1. Department of Chemistry, Bose Institute , 93/1 Acharya Prafulla Chandra Road Kolkata 700009 , India
2. Division of Molecular Medicine, Bose Institute , EN80 Sector V, Salt Lake City, Kolkata 700091 , India
Abstract
Abstract
Helicobacter pylori is a gram-negative microaerophilic bacterium and is associated with gastrointestinal diseases ranging from peptic ulcer and gastritis to gastric cancer and mucosa-associated lymphoid tissue lymphoma. In our laboratory, the transcriptomes and miRnomes of AGS cells infected with H. pylori have been profiled, and an miRNA–mRNA network has been constructed. MicroRNA 671-5p is upregulated during H. pylori infection of AGS cells or of mice. In this study, the role of miR-671-5p during infection has been investigated. It has been validated that miR-671-5p targets the transcriptional repressor CDCA7L, which is downregulated during infection (in vitro and in vivo) concomitant with miR-671-5p upregulation. Further, it has been established that the expression of monoamine oxidase A (MAO-A) is repressed by CDCA7L, and that MAO-A triggers the generation of reactive oxygen species (ROS). Consequently, miR-671-5p/CDCA7L signaling is linked to the generation of ROS during H. pylori infection. Finally, it has been demonstrated that ROS-mediated caspase 3 activation and apoptosis that occurs during H. pylori infection, is dependent on the miR-671-5p/CDCA7L/MAO-A axis. Based on the above reports, it is suggested that targeting miR-671-5p could offer a means of regulating the course and consequences of H. pylori infection.
Funder
Council of Scientific and Industrial Research Emeritus Scheme
J.C. Bose Fellowship
University Grants Commission
Indian Council of Medical Research
Publisher
Oxford University Press (OUP)
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,General Medicine,Immunology and Allergy