In vitro and in vivo evaluation of DNase I in reinstating antibiotic efficacy against Klebsiella pneumoniae biofilms

Author:

Sharma Anayata1,Rishi Praveen2ORCID,Singh Rachna1ORCID

Affiliation:

1. Department of Microbial Biotechnology, Panjab University , Chandigarh, 160014 , India

2. Department of Microbiology, Panjab University , Chandigarh, 160014 , India

Abstract

Abstract Klebsiella pneumoniae is an opportunistic pathogen associated with biofilm-based infections, which are intrinsically antibiotic resistant. Extracellular DNA plays a crucial role in biofilm formation and self-defence, with nucleases being proposed as promising agents for biofilm disruption. This study evaluated the in vitro and in vivo efficacy of DNase I in improving the activity of cefotaxime, amikacin, and ciprofloxacin against K. pneumoniae biofilms. K. pneumoniae ATCC 700603 and a clinical isolate from catheter-related bloodstream infection were cultured for biofilm formation on microtiter plates, and the antibiofilm activity of the antibiotics (0.03–64 mg/L), with or without bovine pancreatic DNase I (1–32 mg/L) was determined by XTT dye reduction test and viable counting. The effect of ciprofloxacin (2 mg/L) and DNase I (16 mg/L) was further evaluated in vitro on 1-cm-long silicon catheter segments, and in a mouse model of subcutaneous catheter-associated infection. Combination with DNase I did not improve the biofilm-preventive capacity of the three antibiotics or the biofilm-eradicating capacity of cefotaxime and amikacin. The biofilm-eradicating capacity of ciprofloxacin was increased by 8-fold and 4-fold in K. pneumoniae ATCC 700603 and clinical isolate, respectively, with DNase I. The combination therapy caused 99% reduction in biofilm biomass in the mouse model.

Funder

Senior Research Fellowship

CMB

BMS

Indian Council of Medical Research

Department of Science and Technology

DST

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,General Medicine,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3