Machine learning cardiac-MRI features predict mortality in newly diagnosed pulmonary arterial hypertension

Author:

Alabed Samer123ORCID,Uthoff Johanna4,Zhou Shuo4,Garg Pankaj1,Dwivedi Krit12,Alandejani Faisal1,Gosling Rebecca1ORCID,Schobs Lawrence4,Brook Martin1,Shahin Yousef1ORCID,Capener Dave1,Johns Christopher S12,Wild Jim M13ORCID,Rothman Alexander M K1,van der Geest Rob J5,Condliffe Robin16,Kiely David G136,Lu Haiping34,Swift Andrew J123

Affiliation:

1. Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield , Sheffield , UK

2. Department of Clinical Radiology, Sheffield Teaching Hospitals , Sheffield , UK

3. INSIGNEO, Institute for in silico medicine, University of Sheffield , UK

4. Department of Computer Science, University of Sheffield , Sheffield , UK

5. Leiden University Medical Center , Leiden , The Netherlands

6. Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital , Sheffield , UK

Abstract

Abstract Aims Pulmonary arterial hypertension (PAH) is a rare but serious disease associated with high mortality if left untreated. This study aims to assess the prognostic cardiac magnetic resonance (CMR) features in PAH using machine learning. Methods and results Seven hundred and twenty-three consecutive treatment-naive PAH patients were identified from the ASPIRE registry; 516 were included in the training, and 207 in the validation cohort. A multilinear principal component analysis (MPCA)-based machine learning approach was used to extract mortality and survival features throughout the cardiac cycle. The features were overlaid on the original imaging using thresholding and clustering of high- and low-risk of mortality prediction values. The 1-year mortality rate in the validation cohort was 10%. Univariable Cox regression analysis of the combined short-axis and four-chamber MPCA-based predictions was statistically significant (hazard ratios: 2.1, 95% CI: 1.3, 3.4, c-index = 0.70, P = 0.002). The MPCA features improved the 1-year mortality prediction of REVEAL from c-index = 0.71 to 0.76 (P ≤ 0.001). Abnormalities in the end-systolic interventricular septum and end-diastolic left ventricle indicated the highest risk of mortality. Conclusion The MPCA-based machine learning is an explainable time-resolved approach that allows visualization of prognostic cardiac features throughout the cardiac cycle at the population level, making this approach transparent and clinically interpretable. In addition, the added prognostic value over the REVEAL risk score and CMR volumetric measurements allows for a more accurate prediction of 1-year mortality risk in PAH.

Publisher

Oxford University Press (OUP)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3