Effect of urban environment on cardiovascular health: a feasibility pilot study using machine learning to predict heart rate variability in patients with heart failure

Author:

van Es Valerie A A12,De Lathauwer Ignace L J34ORCID,Lopata Richard G P1,Kemperman Astrid D A M2,van Dongen Robert P2,Brouwers Rutger W M4,Funk Mathias4,Kemps Hareld M C34

Affiliation:

1. Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

2. Department of Built Environment, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

3. Department of Cardiology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands

4. Department of Industrial Design, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

Abstract

Abstract Aims Urbanization is related to non-communicable diseases such as congestive heart failure (CHF). Understanding the influence of diverse living environments on physiological variables such as heart rate variability (HRV) in patients with chronic cardiac disease may contribute to more effective lifestyle advice and telerehabilitation strategies. This study explores how machine learning (ML) models can predict HRV metrics, which measure autonomic nervous system responses to environmental attributes in uncontrolled real-world settings. The goal is to validate whether this approach can ascertain and quantify the connection between environmental attributes and cardiac autonomic response in patients with CHF. Methods and results A total of 20 participants (10 healthy individuals and 10 patients with CHF) wore smartwatches for 3 weeks, recording activities, locations, and heart rate (HR). Environmental attributes were extracted from Google Street View images. Machine learning models were trained and tested on the data to predict HRV metrics. The models were evaluated using Spearman’s correlation, root mean square error, prediction intervals, and Bland–Altman analysis. Machine learning models predicted HRV metrics related to vagal activity well (R > 0.8 for HR; 0.8 > R > 0.5 for the root mean square of successive interbeat interval differences and the Poincaré plot standard deviation perpendicular to the line of identity; 0.5 > R > 0.4 for the high frequency power and the ratio of the absolute low- and high frequency power induced by environmental attributes. However, they struggled with metrics related to overall autonomic activity, due to the complex balance between sympathetic and parasympathetic modulation. Conclusion This study highlights the potential of ML-based models to discern vagal dynamics influenced by living environments in healthy individuals and patients diagnosed with CHF. Ultimately, this strategy could offer rehabilitation and tailored lifestyle advice, leading to improved prognosis and enhanced overall patient well-being in CHF.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3