Artificial intelligence-based detection of aortic stenosis from chest radiographs

Author:

Ueda Daiju1ORCID,Yamamoto Akira1,Ehara Shoichi2,Iwata Shinichi2,Abo Koji3,Walston Shannon L1,Matsumoto Toshimasa1,Shimazaki Akitoshi1,Yoshiyama Minoru2,Miki Yukio1

Affiliation:

1. Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan

2. Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan

3. Central Clinical Laboratory, Osaka City University Hospital, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan

Abstract

Abstract Aims We aimed to develop models to detect aortic stenosis (AS) from chest radiographs—one of the most basic imaging tests—with artificial intelligence. Methods and results We used 10 433 retrospectively collected digital chest radiographs from 5638 patients to train, validate, and test three deep learning models. Chest radiographs were collected from patients who had also undergone echocardiography at a single institution between July 2016 and May 2019. These were labelled from the corresponding echocardiography assessments as AS-positive or AS-negative. The radiographs were separated on a patient basis into training [8327 images from 4512 patients, mean age 65 ± (standard deviation) 15 years], validation (1041 images from 563 patients, mean age 65 ± 14 years), and test (1065 images from 563 patients, mean age 65 ± 14 years) datasets. The soft voting-based ensemble of the three developed models had the best overall performance for predicting AS with an area under the receiver operating characteristic curve, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 0.83 (95% confidence interval 0.77–0.88), 0.78 (0.67–0.86), 0.71 (0.68–0.73), 0.71 (0.68–0.74), 0.18 (0.14–0.23), and 0.97 (0.96–0.98), respectively, in the validation dataset and 0.83 (0.78–0.88), 0.83 (0.74–0.90), 0.69 (0.66–0.72), 0.71 (0.68–0.73), 0.23 (0.19–0.28), and 0.97 (0.96–0.98), respectively, in the test dataset. Conclusion Deep learning models using chest radiographs have the potential to differentiate between radiographs of patients with and without AS.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3