Deep learning from atrioventricular plane displacement in patients with Takotsubo syndrome: lighting up the black-box

Author:

Zaman Fahim1,Isom Nicholas2,Chang Amanda2,Wang Yi Grace3,Abdelhamid Ahmed2,Khan Arooj2,Makan Majesh4,Abdelghany Mahmoud5,Wu Xiaodong1,Liu Kan24ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Iowa , 103 S. Capitol St., 3318 SC, Iowa City, IA 52242 , USA

2. Division of Cardiology, Department of Internal Medicine, University of Iowa , 200 Hawkins Drive, Iowa City, IA 52242 , USA

3. Department of Mathematics, California State University Dominguez Hills , 1000 E. Victoria Street, Carson, CA 90747 , USA

4. Division of Cardiology, Department of Internal Medicine, Washington University , 4940 Parkview Place, St Louis, MO 63110 , USA

5. Department of Cardiovascular Medicine, Cleveland Clinic , 9500 Euclid Avenue, Cleveland, OH 44195 , USA

Abstract

Abstract Aims The spatiotemporal deep convolutional neural network (DCNN) helps reduce echocardiographic readers’ erroneous ‘judgement calls’ on Takotsubo syndrome (TTS). The aim of this study was to improve the interpretability of the spatiotemporal DCNN to discover latent imaging features associated with causative TTS pathophysiology. Methods and results We applied gradient-weighted class activation mapping analysis to visualize an established spatiotemporal DCNN based on the echocardiographic videos to differentiate TTS (150 patients) from anterior wall ST-segment elevation myocardial infarction (STEMI, 150 patients). Forty-eight human expert readers interpreted the same echocardiographic videos and prioritized the regions of interest on myocardium for the differentiation. Based on visualization results, we completed optical flow measurement, myocardial strain, and Doppler/tissue Doppler echocardiography studies to investigate regional myocardial temporal dynamics and diastology. While human readers’ visualization predominantly focused on the apex of the heart in TTS patients, the DCNN temporal arm’s saliency visualization was attentive on the base of the heart, particularly at the atrioventricular (AV) plane. Compared with STEMI patients, TTS patients consistently showed weaker peak longitudinal displacement (in pixels) in the basal inferoseptal (systolic: 2.15 ± 1.41 vs. 3.10 ± 1.66, P < 0.001; diastolic: 2.36 ± 1.71 vs. 2.97 ± 1.69, P = 0.004) and basal anterolateral (systolic: 2.70 ± 1.96 vs. 3.44 ± 2.13, P = 0.003; diastolic: 2.73 ± 1.70 vs. 3.45 ± 2.20, P = 0.002) segments, and worse longitudinal myocardial strain in the basal inferoseptal (−8.5 ± 3.8% vs. −9.9 ± 4.1%, P = 0.013) and basal anterolateral (−8.6 ± 4.2% vs. −10.4 ± 4.1%, P = 0.006) segments. Meanwhile, TTS patients showed worse diastolic mechanics than STEMI patients (Eʹ/septal: 5.1 ± 1.2 cm/s vs. 6.3 ± 1.5 cm/s, P < 0.001; Sʹ/septal: 5.8 ± 1.3 cm/s vs. 6.8 ± 1.4 cm/s, P < 0.001; Eʹ/lateral: 6.0 ± 1.4 cm/s vs. 7.9 ± 1.6 cm/s, P < 0.001; Sʹ/lateral: 6.3 ± 1.4 cm/s vs. 7.3 ± 1.5 cm/s, P < 0.001; E/Eʹ: 15.5 ± 5.6 vs. 12.5 ± 3.5, P < 0.001). Conclusion The spatiotemporal DCNN saliency visualization helps identify the pattern of myocardial temporal dynamics and navigates the quantification of regional myocardial mechanics. Reduced AV plane displacement in TTS patients likely correlates with impaired diastolic mechanics.

Funder

Obermann Center for Advanced Studies Interdisciplinary Research

Institute for Clinical and Translational Science

Publisher

Oxford University Press (OUP)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3