Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review

Author:

Al Hinai Ghalib1,Jammoul Samer1,Vajihi Zara2,Afilalo Jonathan13

Affiliation:

1. Division of Cardiology, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine Rd, E-222, Montreal, QC H3T 1E2, Canada

2. Department of Emergency Medicine, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine Rd, H-126, Montreal, QC H3T 1E2, Canada

3. Centre for Clinical Epidemiology, Jewish General Hospital, 3755 Cote Ste Catherine Rd, H-411, Montreal, QC H3T 1E2, Canada

Abstract

Abstract The aim of this review was to assess the evidence for deep learning (DL) analysis of resting electrocardiograms (ECGs) to predict structural cardiac pathologies such as left ventricular (LV) systolic dysfunction, myocardial hypertrophy, and ischaemic heart disease. A systematic literature search was conducted to identify published original articles on end-to-end DL analysis of resting ECG signals for the detection of structural cardiac pathologies. Studies were excluded if the ECG was acquired by ambulatory, stress, intracardiac, or implantable devices, and if the pathology of interest was arrhythmic in nature. After duplicate reviewers screened search results, 12 articles met the inclusion criteria and were included. Three articles used DL to detect LV systolic dysfunction, achieving an area under the curve (AUC) of 0.89–0.93 and an accuracy of 98%. One study used DL to detect LV hypertrophy, achieving an AUC of 0.87 and an accuracy of 87%. Six articles used DL to detect acute myocardial infarction, achieving an AUC of 0.88–1.00 and an accuracy of 83–99.9%. Two articles used DL to detect stable ischaemic heart disease, achieving an accuracy of 95–99.9%. Deep learning models, particularly those that used convolutional neural networks, outperformed rules-based models and other machine learning models. Deep learning is a promising technique to analyse resting ECG signals for the detection of structural cardiac pathologies, which has clinical applicability for more effective screening of asymptomatic populations and expedited diagnostic work-up of symptomatic patients at risk for cardiovascular disease.

Funder

Canadian Institutes of Health Research

Fonds de recherche en santé du Québec

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3